分别求证a²+b²+c²≥ab+ac+ bc和√6+√7>√8+√5
2个回答
展开全部
第1题:
a²+b²+c²≥ab+ac+bc
因为:
2a²+2b²+2c²-2ab-2ac-2bc
=a²-2ab+b²+a²-2ac+c²+b²-2bc+c²
=(a-b)²+(a-c)²+(b-c)²≥0
所以:2a²+2b²+2c²-2ab-2ac-2bc≥0
移项得:2a²+2b²+2c²≥2ab+2ac+2bc;
两边同时除以2得:
a²+b²+c²≥ab+ac+bc
第2题:
√6+√7>√8+√5;
(√6+√7)²=6+7+2√42=13+2√42;
(√8+√5)²=8+5+2√40=13+2√40;
因为:42>40;
所以:√42 > √40;
2√42 > 2√40;
13+2√42>13+2√40;
(√6+√7)²>(√8+√5)²;
√6+√7>√8+√5。
a²+b²+c²≥ab+ac+bc
因为:
2a²+2b²+2c²-2ab-2ac-2bc
=a²-2ab+b²+a²-2ac+c²+b²-2bc+c²
=(a-b)²+(a-c)²+(b-c)²≥0
所以:2a²+2b²+2c²-2ab-2ac-2bc≥0
移项得:2a²+2b²+2c²≥2ab+2ac+2bc;
两边同时除以2得:
a²+b²+c²≥ab+ac+bc
第2题:
√6+√7>√8+√5;
(√6+√7)²=6+7+2√42=13+2√42;
(√8+√5)²=8+5+2√40=13+2√40;
因为:42>40;
所以:√42 > √40;
2√42 > 2√40;
13+2√42>13+2√40;
(√6+√7)²>(√8+√5)²;
√6+√7>√8+√5。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询