P是矩形ABCD内一点,PA=3,PB=4,PC=5,试求PD是多少?
2个回答
展开全部
P是矩形ABCD内一点,若PA=3,PB=4,PC=5,则PD=?
解:∵PA^+PC^=PB^+PD^
∴PD^=PA^+PC^-PB^=3^+5^-4^=9+25-16=18
∴PD=3√2
下面是对这个定理的证明:
∵PA^=(m1)^+(n1)^且PC^=(m2)^+(n2)^
∴PA^+PC^=(m1)^+(n1)^+(m2)^+(n2)^
∵PB^=(m2)^+(n1)^且PD^=(m1)^+(n2)^
∴PB^+PD^=(m1)^+(n1)^+(m2)^+(n2)^
∴PA^+PC^=PB^+PD^
解:∵PA^+PC^=PB^+PD^
∴PD^=PA^+PC^-PB^=3^+5^-4^=9+25-16=18
∴PD=3√2
下面是对这个定理的证明:
∵PA^=(m1)^+(n1)^且PC^=(m2)^+(n2)^
∴PA^+PC^=(m1)^+(n1)^+(m2)^+(n2)^
∵PB^=(m2)^+(n1)^且PD^=(m1)^+(n2)^
∴PB^+PD^=(m1)^+(n1)^+(m2)^+(n2)^
∴PA^+PC^=PB^+PD^
追问
您证的太复杂,一道八年级的数学题,刚学完四边形的判定,请您只用矩形的知识解决一下。谢谢!
追答
过点P作EF∥AD交AB于E,交CD于F
过点P作GH∥AB交AD于G,交BC于H
设FC=x
因为PC=5
由勾股定理可得 PF=√(25-x2)
又因为PB=4,BE=FC=x
由勾股定理可得 PE=√(16-x2)
又因为PA=3
由勾股定理可得 AE=√(x2-7)=DF
∵在RT三角形DPF中,两直角边PF=√(25-x2),DF=√(x2-7)
∴斜边PD=√(PF2+DF2)=√(x2-7+25-x2)=√18=3√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询