已知数列an=(3n-1)*2^(n-1),求sn
2个回答
展开全部
s(n)=a(1)+a(2)+...+a(n-1)+a(n)=(3*1-1)*1 + (3*2-1)*2 + ... + [3(n-1)-1]*2^(n-2) + (3n-1)*2^(n-1)
2s(n)=(3*1-1)*2 + (3*2-1)*2^2 + ... + [3(n-1)-1]*2^(n-1) + (3n-1)*2^n,
s(n)=2s(n)-s(n)=-(3*1-1)*1 - 3[2 + 2^2 + ... + 2^(n-1)] + (3n-1)*2^n
=-3[1+2+2^2+...+2^(n-1)] + 1 +(3n-1)*2^n
= 1 + (3n-1)*2^n - 3[2^n-1]/(2-1)
= 1 + (3n-1)*2^n - 3*2^n + 3
= 4 + (3n-4)*2^n
2s(n)=(3*1-1)*2 + (3*2-1)*2^2 + ... + [3(n-1)-1]*2^(n-1) + (3n-1)*2^n,
s(n)=2s(n)-s(n)=-(3*1-1)*1 - 3[2 + 2^2 + ... + 2^(n-1)] + (3n-1)*2^n
=-3[1+2+2^2+...+2^(n-1)] + 1 +(3n-1)*2^n
= 1 + (3n-1)*2^n - 3[2^n-1]/(2-1)
= 1 + (3n-1)*2^n - 3*2^n + 3
= 4 + (3n-4)*2^n
展开全部
an=(3n-1)*2^(n-1)
sn=a1+a2+a3+...+an
sn=2+5*2+8*2^2+11*2^3+...+(3n-4)2^(n-2)+(3n-1)*2^(n-1)
2sn=2^2 +5*2^2+8*2^3+...+(3n-7)2^(n-2)+(3n-1)*2^n
2sn=2^2 +3*2^2+3*2^3+...+382^(n-2)+(3n-1)*2^n-(3n-1)*2^n
2sn=4+3[-4(1-2^(n-1)]-(3n-1)*2^n
sn=-4+(7-3n)*2^n
sn=a1+a2+a3+...+an
sn=2+5*2+8*2^2+11*2^3+...+(3n-4)2^(n-2)+(3n-1)*2^(n-1)
2sn=2^2 +5*2^2+8*2^3+...+(3n-7)2^(n-2)+(3n-1)*2^n
2sn=2^2 +3*2^2+3*2^3+...+382^(n-2)+(3n-1)*2^n-(3n-1)*2^n
2sn=4+3[-4(1-2^(n-1)]-(3n-1)*2^n
sn=-4+(7-3n)*2^n
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询