设2阶方阵A的特征多项式为f(λ)=λ²-10λ+21,则A^-1的特征多项式为_________ 设α₁=(1,1,0,1

设2阶方阵A的特征多项式为f(λ)=λ²-10λ+21,则A^-1的特征多项式为_________设α₁=(1,1,0,1),α₂=(2... 设2阶方阵A的特征多项式为f(λ)=λ²-10λ+21,则A^-1的特征多项式为_________
设α₁=(1,1,0,1),α₂=(2,1,3,1),β₁=(1,0,-1,-1),β₂=(4,1,-7,-3),W₁=L(α₁,α₂),W₂=L(β₁,β₂),则dim(W₁+W₂)=________

在R³中,令σ(x1,x2,x3)=(x1²,x2+x3,x3²),则σ______(填是或不是)R³中的线性变换

后面还有一题,等会补
在欧氏空间R³中,设从一组规范正交基到另一组规范正交基的过度矩阵为T,则detT=______
展开
lry31383
高粉答主

2011-05-06 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
1. A^-1的特征多项式为 λ²-(10/21)λ+(1/21)
由A的特征多项式为f(λ)=λ²-10λ+21=(λ-3)(λ-7). 所以A的特征值是3,7.
所以 A^-1 的特征值是 1/3, 1/7
所以 A^-1 的特征多项式为 λ^2 - ( 1/3+1/7)λ + (1/3)*(1/7) = λ²-(10/21)λ+(1/21).
2.
3. σ(2(1,2,3)) = σ(2,4,6) = (4,10,36)
2σ(1,2,3) = 2(1,5,9) = (2,10,18)
所以 σ(2(1,2,3)) ≠ 2σ(1,2,3) .
所以 σ不是R³中的线性变换.
补充部分:
标准正交基构成的矩阵是正交矩阵, 正交矩阵的行列式 = ±1.
所以过渡矩阵T的行列式 = 1 或 -1.
wxjbnu
2011-05-06 · TA获得超过193个赞
知道答主
回答量:110
采纳率:0%
帮助的人:74.5万
展开全部
由于A的特征多项式为f(λ)=λ²-10λ+21并且A是2阶矩阵,所以可以知道A是可逆的(λ=3,7)。而A^-1就是A逆。所以A逆的特征值为A的特征值的倒数,即1/3和1/7.所以
A逆的特征多项式为f(λ)=(λ-1/3)(λ-1/7)

第二问:求W₁+W₂的维数实际上就是求矩阵(α₁,α₂,β₁,β₂)的维数,因为L(α₁,α₂)只是线性变换,相当于矩阵的初等列变换,不影响矩阵的维数的。

第三问:不是。线性变换肯定是一一映射的。但是明显σ将(1,0,0)映射到(1,0,0),而将
(-1,0,0)也映射到(1,0,0)上,所以不是的

补充问:detT=1,假设一组规范正交基为x1,y1,z1,其中x1,y1,z1分别是3维列向量。
而另一组规范正交基为x2,y2,z2,其中x2,y2,z2分别是3维列向量。令A=(x1,y1,z1),B=(x2,y2,z2),那么有B=TA,而detA=1,detB=1,所以T=1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式