已知等比数列{an}满足:a2=4,公比q=2,数列{bn}的前n项和为Sn,且Sn=4/3bn-2/3an+2/3
而n属于正整数设cn=bn/an求证c1/c2+c2/c3+…+cn/cn+1<n/2anbn我会求只需说怎么证就可以了...
而n属于正整数 设cn=bn/an 求证c1/c2+c2/c3+…+cn/cn+1<n/2
an bn我会求只需说怎么证就可以了 展开
an bn我会求只需说怎么证就可以了 展开
3个回答
展开全部
a1=a2/q = 2
an =a1.q^(n-1) = 2^n
Sn = (4/3)bn -(2/3)an + 2/3
= (4/3)bn -(2/3).2^n + 2/3
n=1, b1= 2
bn = Sn -S(n-1)
=(4/3)bn - (4/3)b(n-1) - (1/3).2^n
bn = 4b(n-1) + 2^n
bn +2^n = 4[ b(n-1) +2^(n-1) ]
=>{bn +2^n} 是等比数列, q=4
bn +2^n = 4^(n-1) .[b1 +2^1]
=4^n
bn = 4^n-2^n
cn = bn/an
= (4^n -2^n)/2^n
= 2^n -1
cn /c(n+1) = (2^n -1)/(2^(n+1) -1) < 1/2
c1/c2+c2/c3+...+cn/c(n+1) < n/2
an =a1.q^(n-1) = 2^n
Sn = (4/3)bn -(2/3)an + 2/3
= (4/3)bn -(2/3).2^n + 2/3
n=1, b1= 2
bn = Sn -S(n-1)
=(4/3)bn - (4/3)b(n-1) - (1/3).2^n
bn = 4b(n-1) + 2^n
bn +2^n = 4[ b(n-1) +2^(n-1) ]
=>{bn +2^n} 是等比数列, q=4
bn +2^n = 4^(n-1) .[b1 +2^1]
=4^n
bn = 4^n-2^n
cn = bn/an
= (4^n -2^n)/2^n
= 2^n -1
cn /c(n+1) = (2^n -1)/(2^(n+1) -1) < 1/2
c1/c2+c2/c3+...+cn/c(n+1) < n/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询