已知函数f(x)=x2+ax-lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(

已知函数f(x)=x2+ax-lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0... 已知函数f(x)=x2+ax-lnx,a∈R.(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;(2)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g(x)的最小值是3,若存在,求出a的值;若不存在,说明理由. 展开
 我来答
仪晴宴3981
2014-12-23 · 超过63用户采纳过TA的回答
知道答主
回答量:112
采纳率:100%
帮助的人:59.3万
展开全部
(1)f(x)=2x+a?
1
x
2x2+ax?1
x
≤0
在[1,2]上恒成立,
令h(x)=2x2+ax-1,
h(1)≤0
h(2)≤0

a≤?1
a≤?
7
2

a≤?
7
2
(6分)
(2)假设存在实数a,使g(x)=ax-lnx(x∈(0,e])有最小值3,g(x)=a?
1
x
=
ax?1
x
(7分)
当a≤0时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,a=
4
e
(舍去),
∴g(x)无最小值.
0<
1
a
<e
时,g(x)在(0,
1
a
)
上单调递减,在(
1
a
,e]
上单调递增
g(x)min=g(
1
a
)=1+lna=3
,a=e2,满足条件.(11分)
1
a
≥e
时,g(x)在(0,e]上单调递减,g(x)min=g(e)=ae-1=3,a=
4
e
(舍去),
∴f(x)无最小值.(13分)
综上,存在实数a=e2,使得当x∈(0,e]时g(x)有最小值3.(14分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式