高一三角函数恒等变换,求过程
已知cos(π/4-α)=12/13,且π/4-α是第一象限角,则sin(π/2-2α)/sin(π/4+α)...
已知cos(π/4-α)=12/13, 且π/4-α是第一象限角 ,则sin(π/2-2α)/sin(π/4+α)
展开
展开全部
解答:
因为:cos(π/4-α)=12/13,所以:cosπ/4cosα+sinπ/4sinα=12/13,
即:(根号2/2)(sinα+cosα)=12/13,所以:sinα+cosα=(12倍根号2)/13
两遍呢同时平方得到:1+sin2α=288/169,解得:sin2α=119/169
因为:π/4-α是第一象限角 ,所以:2kπ<π/4-α<2kπ+π/2
得到:2kπ-π/2<α-π/4<2kπ,解得:2kπ-π/4<α<2kπ+π/4
所以:4kπ-π/2<2α<4kπ+π/2,即:2α为第一或第四象限角
所以:sin(π/2-2α)/sin(π/4+α)=cos2α/cos[π/2-(π/4+α)]=根号下[1-(sin2α)^2]/cos(π/4-α)
=120/169*13/12=10/13
因为:cos(π/4-α)=12/13,所以:cosπ/4cosα+sinπ/4sinα=12/13,
即:(根号2/2)(sinα+cosα)=12/13,所以:sinα+cosα=(12倍根号2)/13
两遍呢同时平方得到:1+sin2α=288/169,解得:sin2α=119/169
因为:π/4-α是第一象限角 ,所以:2kπ<π/4-α<2kπ+π/2
得到:2kπ-π/2<α-π/4<2kπ,解得:2kπ-π/4<α<2kπ+π/4
所以:4kπ-π/2<2α<4kπ+π/2,即:2α为第一或第四象限角
所以:sin(π/2-2α)/sin(π/4+α)=cos2α/cos[π/2-(π/4+α)]=根号下[1-(sin2α)^2]/cos(π/4-α)
=120/169*13/12=10/13
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
由cos(π/4-a)=12/13,且π/4-α是第一象限角
得sin(π/4-a)=5/13,
从而sin(π/2-2α)/sin(π/4+α)
=sin2(π/4-α)/sin(π/4+α)
=2sin(π/4-α)cos(π/4-α)/sin[π/2-(π/4-α)] (注:π/4+a=π/2-(π/4+a)),
=2sin(π/4-α)cos(π/4-α)/cos(π/4-α)
=2sin(π/4-α)
=2*(5/13)
=10/13
得sin(π/4-a)=5/13,
从而sin(π/2-2α)/sin(π/4+α)
=sin2(π/4-α)/sin(π/4+α)
=2sin(π/4-α)cos(π/4-α)/sin[π/2-(π/4-α)] (注:π/4+a=π/2-(π/4+a)),
=2sin(π/4-α)cos(π/4-α)/cos(π/4-α)
=2sin(π/4-α)
=2*(5/13)
=10/13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知cos(π/4-α)=12/13, 且π/4-α是第一象限角 ,则sin(π/2-2α)/sin(π/4+α)=?
解:sin(π/2-2α)/sin(π/4+α)=cos2α/[(√2/2)(cosα+sinα)]=(cos²α-sin²α)/[(√2/2)(cosα+sinα)]
=(√2)(cosα-sinα)=2[cos(π/4)cosα-sin(π/4)sinα]=2cos(π/4+α)=2cos[π/2-(π/4-α)]=2sin(π/4-α)
=2√[1-cos²(π/4-α)]=2√[1-(12/13)²]=10/13
解:sin(π/2-2α)/sin(π/4+α)=cos2α/[(√2/2)(cosα+sinα)]=(cos²α-sin²α)/[(√2/2)(cosα+sinα)]
=(√2)(cosα-sinα)=2[cos(π/4)cosα-sin(π/4)sinα]=2cos(π/4+α)=2cos[π/2-(π/4-α)]=2sin(π/4-α)
=2√[1-cos²(π/4-α)]=2√[1-(12/13)²]=10/13
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询