如图所示,C为线段AE上一动点(点C不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交

如图所示,C为线段AE上一动点(点C不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点Q,连接PQ.以下四个结论:①... 如图所示,C为线段AE上一动点(点C不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点Q,连接PQ.以下四个结论:①AD=BE;②AP=BQ;③DE=DP;④PQ∥AE.恒成立的有______(把你认为正确的序号都填上). 展开
 我来答
囧囧囧璨b
推荐于2016-12-01 · TA获得超过145个赞
知道答主
回答量:111
采纳率:100%
帮助的人:110万
展开全部
∵△ABC和△CDE都是等边三角形,
∴CB=CA,CD=CE,∠ACB=∠DCE=60°,
∴∠BCD=60°,
∴∠ACD=∠BCE,
∴△ACD≌△BCE,
∴AD=BE,所以①正确;
∴∠CAP=∠CBQ,
∴△CAP≌△CBQ,
∴AP=BQ,所以②正确;
∴CP=CQ,
∴△CPQ为等边三角形,
∴∠CPQ=60°,
∴PQ∥AE,所以④正确;
∵DE=DC,∠DCP=60°,而∠CPD≠60°,
∴DP≠DC,即DE≠DP,所以③错误.
故答案为①②④.
小布丁AI
2016-02-22 · TA获得超过1393个赞
知道大有可为答主
回答量:3586
采纳率:96%
帮助的人:2968万
展开全部
∵△ABC和△CDE都是等边三角形,
∴CB=CA,CD=CE,∠ACB=∠DCE=60°,
∴∠BCD=60°,
∴∠ACD=∠BCE,
∴△ACD≌△BCE,
∴AD=BE,所以①正确;
∴∠CAP=∠CBQ,
∴△CAP≌△CBQ,
∴AP=BQ,所以②正确;
∴CP=CQ,
∴△CPQ为等边三角形,
∴∠CPQ=60°,
∴PQ∥AE,所以④正确;
∵DE=DC,∠DCP=60°,而∠CPD≠60°,
∴DP≠DC,即DE≠DP,所以③错误.
故答案为①②④
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xiajinrong56
2015-08-30 · TA获得超过2170个赞
知道大有可为答主
回答量:9989
采纳率:0%
帮助的人:429万
展开全部
没有图,题目不完整,无法回答
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式