(2014?海淀区二模)已知关于x的方程:x2-(m-1)x-m=0①和x2-(9-m)x+2(m+1)=3②,其中m>0.(1)求
(2014?海淀区二模)已知关于x的方程:x2-(m-1)x-m=0①和x2-(9-m)x+2(m+1)=3②,其中m>0.(1)求证:方程①总有两个不相等的实数根;(2...
(2014?海淀区二模)已知关于x的方程:x2-(m-1)x-m=0①和x2-(9-m)x+2(m+1)=3②,其中m>0.(1)求证:方程①总有两个不相等的实数根;(2)设二次函数y1=x2?(m?1)x?m的图象与x轴交于A、B两点(点A在点B的左侧),将A、B两点按照相同的方式平移后,点A落在点A′(1,3)处,点B落在点B′处,若点B′的横坐标恰好是方程②的一个根,求m的值;(3)设二次函数y2=x2?(9?m)x+2(m+1),在(2)的条件下,函数y1,y2的图象位于直线x=3左侧的部分与直线y=kx(k>0)交于两点,当向上平移直线y=kx时,交点位置随之变化,若交点间的距离始终不变,则k的值是______.
展开
1个回答
展开全部
(1)方程x2-(m-1)x-m=0中,
△=(m-1)2+4m=m2+2m+1=(m+1)2,
由m>0知必有m+1>0,故△>0.∴方程①总有两个不相等的实数根;
(2)令y1=0,依题意可解得A(-1,0),B(m,0).
∵平移后,点A落在点A'(1,3)处,
∴平移方式是将点A向右平移2个单位,再向上平移3个单位得到.
∴点B(m,0)按相同的方式平移后,点B'为(m+2,3).
则依题意有(m+2)2-(9-m)(m+2)+2(m+1)=3.
解得m1=3,m2=?
(负数舍去).
∴m的值为3.
(3)∵m=3,
∴y1=x2-2x-3,y2=x2-6x+8,
∴y1与y=kx的交点坐标为:
,y2与y=kx的交点坐标为
,
又∵向上平移直线y=kx时,交点位置随之变化,若交点间的距离始终不变,
∴k=
.
故答案为:
.
△=(m-1)2+4m=m2+2m+1=(m+1)2,
由m>0知必有m+1>0,故△>0.∴方程①总有两个不相等的实数根;
(2)令y1=0,依题意可解得A(-1,0),B(m,0).
∵平移后,点A落在点A'(1,3)处,
∴平移方式是将点A向右平移2个单位,再向上平移3个单位得到.
∴点B(m,0)按相同的方式平移后,点B'为(m+2,3).
则依题意有(m+2)2-(9-m)(m+2)+2(m+1)=3.
解得m1=3,m2=?
5 |
2 |
∴m的值为3.
(3)∵m=3,
∴y1=x2-2x-3,y2=x2-6x+8,
∴y1与y=kx的交点坐标为:
|
|
又∵向上平移直线y=kx时,交点位置随之变化,若交点间的距离始终不变,
∴k=
3 |
2 |
故答案为:
3 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询