概率论。不是说“样本方差的期望值等于总体方差”吗?

帐号已注销
2019-07-11 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:165万
展开全部

DYi并不是样本方差的期望,把它代入样本方差的期望表达式中正好可以验证样本方差的期望等于总体的方差。

设总体为X,抽取n个i.i.d.的样本X1,X2,...,Xn,其样本均值为Y = (X1+X2+...+Xn)/n

其样本方差为S =( (Y-X1)^2 + (Y-X2)^2 + ... + (Y-Xn)^2 ) / (n-1)

为了记号方便,我们只看S的分子部分,设为A

则 E A =E( n * Y^2 - 2 * Y * (X1+X2+...+Xn) + (X1^2 + X2^2 +...+ Xn^2))

=E( (X1^2 + X2^2 +...+ Xn^2) - n * Y^2 )

注意 EX1 = EX2 = ... = EXn = EY = EX;

VarX1 = VarX2 = ... = VarXn = VarX = E(X^2) - (EX)^2

VarY = VarX / n (这条不是明显的,但是可以展开后很容易地证出来,而且也算是一个常识性的结论)

所以E A = n(VarX + (EX)^2) - n * (VarY + (EY)^2)

= n(VarX + (EX)^2) - n * (VarX/n + (EX)^2)

= (n-1) VarX

所以 E S = VarX;得证。

扩展资料:

实际上,样本方差可以理解成是对所给总体方差的一个无偏估计。E(S^2)=DX。

n-1的使用称为贝塞尔校正(Bessel's correction),也用于样本协方差和样本标准偏差(方差平方根)。

平方根是一个凹函数,因此引入负偏差(由Jensen不等式),这取决于分布,因此校正样本标准偏差(使用贝塞尔校正)有偏差。 标准偏差的无偏估计是一个技术上涉及的问题,尽管对于使用术语n-1.5的正态分布,形成无偏估计。

无偏样本方差是函数ƒ(y1,y2)=(y1-y2)2/2的U统计量,这意味着它是通过对群体的两个样本统计平均得到的。

参考资料来源:百度百科-样本方差

hxzhu66
高粉答主

推荐于2017-12-16 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:96%
帮助的人:1.2亿
展开全部

DYi并不是样本方差的期望,把它代入样本方差的期望表达式中正好可以验证样本方差的期望等于总体的方差。经济数学团队帮你解答,请及时采纳。谢谢!

更多追问追答
追问
还是没理解(n-1)/n怎么来的
追答

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式