如图,正方形ABCD的对角线BD上取BE=BC,连接CE,P为CE上任一点,PQ⊥BC,PR⊥BE,求证PQ+PR=二分之一BD
展开全部
用面积法,BE/2*PQ+BC/2*PR=1/2BE*CO,得PQ+PR=BO=BD/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:从P作PH⊥CO,垂足为H
∵ABCD是正方形
∴DO⊥CO,即∠ROH=90°
又PH⊥CO,PR⊥OR,即∠PHO=∠ROH=∠ORP=90°
∴ORPH是矩形
∴PR=OH
∵DO⊥CO,PH⊥CO
∴DO∥PH
∴∠HPC=∠BEC
又BE=BC
∴∠BEC=∠BCE
∴∠HPC=∠BCE=∠QCP
再加上∠PHC=∠CQP=90°,CP=PC
∴△PHC≌△CQP
∴PQ=CH
于是PQ+PR=OH+CH=OC=½BD
∵ABCD是正方形
∴DO⊥CO,即∠ROH=90°
又PH⊥CO,PR⊥OR,即∠PHO=∠ROH=∠ORP=90°
∴ORPH是矩形
∴PR=OH
∵DO⊥CO,PH⊥CO
∴DO∥PH
∴∠HPC=∠BEC
又BE=BC
∴∠BEC=∠BCE
∴∠HPC=∠BCE=∠QCP
再加上∠PHC=∠CQP=90°,CP=PC
∴△PHC≌△CQP
∴PQ=CH
于是PQ+PR=OH+CH=OC=½BD
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询