如图(1),点M,N分别在等边三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.(1)求证:∠BQM=60°;

如图(1),点M,N分别在等边三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.(1)求证:∠BQM=60°;(2)如图(2),若将题中的点M,N分别移动到... 如图(1),点M,N分别在等边三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.(1)求证:∠BQM=60°;(2)如图(2),若将题中的点M,N分别移动到BC,CA的延长线上,其它条件不变,∠BQM=60°还成立吗?(不需证明)(3)如图(3),若将题中的条件“点M,N分别在等边三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,其它条件不变,∠BQM=60°还成立吗?若成立,请说明理由,若不成立,请写出∠BQM的度数. 展开
 我来答
哈依达尔5365
2014-09-26 · TA获得超过275个赞
知道答主
回答量:103
采纳率:0%
帮助的人:94.8万
展开全部
(1)证明:∵△ABC为等边三角形,
∴AB=BC,∠ABC=∠BCN=60°,…(1分)
在△ABM和△BCN中,
AB=BC
∠ABM=∠BCN
BM=CN

∴△ABM≌△BCN(SAS),…(3分)
∴∠BAM=∠CBN,…(4分)
∵∠BQM=∠BAM+∠ABN,
∴∠BQM=∠CBN+∠ABN=∠ABC=60°;…(5分)

(2)∠BQM=60°还成立.…(7分)理由如下:
∵△ABC为等边三角形,
∴AB=BC,∠ABC=∠BCN=60°,
在△ABM和△BCN中,
AB=BC
∠ABM=∠BCN
BM=CN

∴△ABM≌△BCN(SAS),
∴∠BMA=∠CNB,
∴∠BQM=∠CNB+∠QAN=∠BMA+∠CAM=∠ACB=60°;

(3)∠BQM=60°不成立,∠BQM=90°.理由如下:
∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠BCN=90°,
在△ABM和△BCN中,
AB=BC
∠ABM=∠BCN
BM=CN

∴△ABM≌△BCN(SAS),
∴∠BAM=∠CBN,
∵∠BQM=∠BAM+∠ABN,
∴∠BQM=∠CBN+∠ABN=∠ABC=90°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式