如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中C点的横坐

如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求抛物线的解析式及直线AC的解析式;(... 如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点,直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求抛物线的解析式及直线AC的解析式;(2)P是线段AC上的一个动点,过P点作x轴的垂线交抛物线于E点,求线段PE长度的最大值;(3)点G是抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由. 展开
 我来答
大千事事无常7102
推荐于2016-12-01 · 超过60用户采纳过TA的回答
知道答主
回答量:195
采纳率:0%
帮助的人:60.8万
展开全部
(1)将A(-1,0),B(3,0)代入y=x2+bx+c,
得b=-2,c=-3;
∴y=x2-2x-3.
将C点的横坐标x=2代入y=x2-2x-3,
得y=-3,
∴C(2,-3);
∴直线AC的函数解析式是y=-x-1.

(2)设P点的横坐标为x(-1≤x≤2),
则P、E的坐标分别为:P(x,-x-1),E(x,x2-2x-3);
∵P点在E点的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2,
∴当x=
1
2
时,PE的最大值=
9
4


(3)存在4个这样的点F,分别是F1(1,0),F2(-3,0),F3(4+
7
,0),F4(4-
7
,0).
①如图,连接C与抛物线和y轴的交点,
∵C(2,-3),G(0,-3)
∴CG∥X轴,此时AF=CG=2,
∴F点的坐标是(-3,0);

②如图,AF=CG=2,A点的坐标为(-1,0),因此F点的坐标为(1,0);

③如图,此时C,G两点的纵坐标关于x轴对称,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1±
7
,3),由于直线GF的斜率与直线AC的相同,因此可设直线GF的解析式为y=-x+h,将G点代入后可得出直线的解析式为y=-x+4+
7
.因此直线GF与x轴的交点F的坐标为(4+
7
,0);

④如图,同③可求出F的坐标为(4-
7
,0);

综合四种情况可得出,存在4个符合条件的F点.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式