如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1)求证:DE-BF=EF;(2

如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1)求证:DE-BF=EF;(2)当点G为BC边中点时,试探究线段EF与GF之... 如图①,四边形ABCD是正方形,点G是BC上任意一点,DE⊥AG于点E,BF⊥AG于点F.(1)求证:DE-BF=EF;(2)当点G为BC边中点时,试探究线段EF与GF之间的数量关系,并说明理由;(3)若点G为CB延长线上一点,其余条件不变.请你在图②中画出图形,写出此时DE、BF、EF之间的数量关系(不需要证明). 展开
 我来答
好吃哟加构8
2014-08-26 · TA获得超过219个赞
知道答主
回答量:142
采纳率:100%
帮助的人:65.8万
展开全部
(1)证明:∵四边形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
∴△ABF≌△DAE,
∴BF=AE,AF=DE,
∴DE-BF=AF-AE=EF.

(2)EF=2FG,
理由如下:
∵AB⊥BC,BF⊥AG,AB=2BG,
∵∠BAG=∠GBF,
∴△ABG △BFG,
同理可得,△AFB △BFG △ABG,
AB
BG
=
AF
BF
=
BF
FG
=2,
∴AF=2BF,BF=2FG,
由(1)知,AE=BF,
∴EF=AF-AE=AF-BF=BF=2FG.

(3)如图,DE+BF=EF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式