(2013?广州三模)斜三棱柱A1B1C1-ABC中,侧面AA1C1C⊥底面ABC,侧面AA1C1C是菱形,∠A1AC=60°,AC=3,A

(2013?广州三模)斜三棱柱A1B1C1-ABC中,侧面AA1C1C⊥底面ABC,侧面AA1C1C是菱形,∠A1AC=60°,AC=3,AB=BC=2,E、F分别是A1... (2013?广州三模)斜三棱柱A1B1C1-ABC中,侧面AA1C1C⊥底面ABC,侧面AA1C1C是菱形,∠A1AC=60°,AC=3,AB=BC=2,E、F分别是A1C1,AB的中点.(1)求证:EF∥平面BB1C1C;(2)求证:CE⊥面ABC.(3)求四棱锥E-BCC1B1的体积. 展开
 我来答
第二名NDK
推荐于2016-09-30 · TA获得超过114个赞
知道答主
回答量:150
采纳率:75%
帮助的人:58.4万
展开全部
(1)证明:取BC中点M,连结FM,C1M.在△ABC中,
∵F,M分别为BA,BC的中点,
∴FM∥AC,FM=
1
2
AC.
∵E为A1C1的中点,AC∥A1C1
∴FM∥EC1且FM=EC1
∴四边形EFMC1为平行四边形∴EF∥C1M.
∵C1M?平面BB1C1C,EF?平面BB1C1C,∴EF∥平面BB1C1C.
(2)证明:连接A1C,∵四边形AA1C1C是菱形,∠A1AC=60°
∴△A1C1C为等边三角形
∵E是A1C1的中点.∴CE⊥A1C1
∵四边形AA1C1C是菱形,∴A1C1∥AC.∴CE⊥AC.
∵侧面AA1C1C⊥底面ABC,且交线为AC,CE?面AA1C1C
∴CE⊥面ABC
(3)连接B1C,∵四边形BCC1B1是平行四边形,所以四棱锥VE?BCC1B1=2VC?EC1B1
由第(2)小问的证明过程可知 EC⊥面ABC
∵斜三棱柱A1B1C1-ABC中,∴面ABC∥面A1B1C1.∴EC⊥面EB1C1
∵在直角△CEC1中CC1=3,EC1
3
2
,∴EC=
3
3
2

SB1EC1
1
2
×
3
2
×
22?(
3
2
)
2
3
7
8

∴四棱锥VE?BCC1B1=2VC?EC1B1=2×
1
3
×
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消