已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数).(1)求函数f(x)的最小值;(2)若f(x)≥0对任

已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数).(1)求函数f(x)的最小值;(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值;(3)在(2)的条件... 已知函数f(x)=ex-ax-1(a>0,e为自然对数的底数).(1)求函数f(x)的最小值;(2)若f(x)≥0对任意的x∈R恒成立,求实数a的值;(3)在(2)的条件下,证明:(1n)n+(2n)n+…+(n?1n)n+(nn)n<ee?1(其中n∈N*). 展开
 我来答
纯良且感人的标兵2224
推荐于2018-04-12 · 超过57用户采纳过TA的回答
知道答主
回答量:108
采纳率:0%
帮助的人:109万
展开全部
解答:(1)解:由题意a>0,f′(x)=ex-a,
由f′(x)=ex-a=0得x=lna.
当x∈(-∞,lna)时,f′(x)<0;当x∈(lna,+∞)时,f′(x)>0.
∴f(x)在(-∞,lna)单调递减,在(lna,+∞)单调递增.
即f(x)在x=lna处取得极小值,且为最小值,其最小值为f(lna)=elna-alna-1=a-alna-1.(5分)
(2)解:f(x)≥0对任意的x∈R恒成立,即在x∈R上,f(x)min≥0.
由(1),设g(a)=a-alna-1,所以g(a)≥0.
由g′(a)=1-lna-1=-lna=0得a=1.
∴g(a)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减,
∴g(a)在a=1处取得最大值,而g(1)=0.
因此g(a)≥0的解为a=1,∴a=1.(9分)
(3)证明:由(2)知,对任意实数x均有ex-x-1≥0,即1+x≤ex
x=?
k
n
(n∈N*,k=0,1,2,3,…,n-1),则0<1?
k
n
e?
k
n

(1?
k
n
)n≤(e?
k
n
)ne?k

(
1
n
)n+(
2
n
)n+…+(
n?1
n
)n+(
n
n
)ne?(n?1)+e?(n?2)+…+e?2+e?1+1

=
1?e?n
1?e?1
1
1?e?1
e
e?1
.(14分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式