为什么在圆中,以圆的直径为边作的所有三角形都是直角三角形?
(1)因为圆周角等于圆心角的一半,“直径”这个圆心角是180度的,所以直径的圆周角都是90度,所以以圆的直径为一条边,所对的顶点在圆弧上的三角形都是直角三角形.这是你那句话的逆定理。
(2)至于要说明为什么“所有的”直角三角形直角点都在圆弧上。首先证明在圆弧上的都是直角三角形,这在(1)已经说明的;然后说明所有第三个点不在圆弧上的三角形,都不是以那个点位直角点的直角三角形。
三角形的面积公式:
(其中,a、b为三角形两边,C为边c所对角)
因为该公式涉及到建立在直角三角形基础上的正弦值,而“正弦”摆脱圆的控制而在直角三角形中讨论,是16世纪的事。哥白尼的得意门生——奥地利数学家雷提库斯(Rhaeticus,1514—1574)在《三角学准则》一书中,将正弦函数的定义直接建立在“直角三角形”上,即sinα=对边/斜边。因此,可断定出现在16世纪以后。
(1)因为圆周角等于圆心角的一半,“直径”这个圆心角是180度的,所以直径的圆周角都是90度,所以以圆的直径为一条边,所对的顶点在圆弧上的三角形都是直角三角形.这是你那句话的逆定理.
(2)至于要说明为什么“所有的”直角三角形直角点都在圆弧上.首先证明在圆弧上的都是直角三角形,这在(1)已经说明的;然后说明所有第三个点不在圆弧上的三角形,都不是以那个点位直角点的直角三角形.
扩展资料:
在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数个点。
在同一平面内,到定点的距离等于定长的点的集合叫做圆。圆可以表示为集合{M||MO|=r},圆的标准方程是(x - a) ² + (y - b) ² = r ²。其中,(a , b)是圆心,r 是半径。
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。
当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是概念性的图形。
直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
连接这个顶点和对边的中点(即圆心),即为这边上的中线
可见,中线等于圆的半径,等于所在边(直径)的一半
所以三角形为直角三角形