急求! 一道高数的空间解析几何题 如图

ddhan001
高粉答主

2011-05-09 · 繁杂信息太多,你要学会辨别
知道大有可为答主
回答量:1.9万
采纳率:75%
帮助的人:6464万
展开全部
令F(x,y,z)=x^2+y^2+z-4=0
则曲面F(x,y,z)的切平面L方程为:F′x(x0,y0,z0)(x-x0)+F′y(x0,y0,z0)(y-y0)+F′z(x0,y0,z0)(z-z0)=0
其中:P(x0,y0,z0)为切点,F′x、F′y、F′z分别为F(x,y,z)对x、y、z的偏导
可得F′x=2x0 F′y=2y0 F′z=1
又切平面L平行于平面π,所以2x0/2=2y0/2=1/1
x0=1 y0=1 z0=4-(x0)^2-(y0)^2=2
P(1,1,2)
故切平面L:2(x-1)+2(y-1)+(z-2)=0
2x+2y+z-6=0
2)在平面π上取点Q(0,0,0)
则向量PQ=(1,1,2)
平面π的法向量为:向量n={2,2,1}
则此曲面到平面π的最短距离S
为向量PQ到法向量n的投影的模
S=向量PQ·COS<PQ,n>
=(向量PQ·向量n)/(│向量n│)
=(1×2+1×2+2×1)/√(2^2+2^2+1^2)
=2
所以最短距离是2 最长距离是∞
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式