积分 sin^4xcos^2x dx
http://i36.photobucket.com/albums/e20/xx123321/111.png
Hints: sin^4xcos^2x = sin^2x(sinxcosx)^2 展开
∫ (sin^4x)*(cos^2x) dx=1/16*x-1/64*sin4x-1/48*(sin2x)^3+C
解:∫ (sin^4x)*(cos^2x) dx
=∫ ((1-cos2x)/2)^2*((cos2x+1)/2) dx
=1/8∫ (1-cos2x))^2*(1+cos2x) dx
=1/8∫ (1-cos2x-(cos2x)^2+(cos2x)^3) dx
=1/8∫ 1 dx-1/8∫ cos2x dx-1/8∫ (cos2x)^2 dx+1/8∫ (cos2x)^3 dx
=1/8*x-1/16*sin2x-1/8∫ (cos4x+1)/2 dx+1/8∫ (1-(sin2x)^2)*cos2x dx
=1/8*x-1/16*sin2x-1/64*sin4x-1/16*x+1/16∫ (1-(sin2x)^2)dsin2x
=1/8*x-1/16*sin2x-1/64*sin4x-1/16*x+1/16*sin2x-1/48*(sin2x)^3+C
=1/16*x-1/64*sin4x-1/48*(sin2x)^3+C
扩展资料:
1、不定积分的性质
(1)函数的和(差)的不定积分等于各个函数的不定积分的和(差)。即:
∫[a(x)±b(x)]dx=∫a(x)dx±∫b(x)dx
(2)求不定积分时,被积函数中的常数因子可以提到积分号外面来。即:
∫k*a(x)dx=k*∫a(x)dx
2、不定积分公式:∫adx=ax+C、∫1/xdx=ln|x|+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C、
3、三角函数变换公式:sin2A=2sinAcosA、cos2A=2*(cosA^2)-1=1-2(sinA)^2
4、例题
(1)∫4*cosxdx=1/4*sinx+C
(2)∫2*sinxdx=-1/2*cosx+C
(3)4(sinx)^2=2*(1-cos2x)
(4)3(cosx)^2=3/2*(1+cos2x)
参考资料来源:百度百科-不定积分
方法1:
原式=∫sin⁴x cos²x
=∫sin⁴x (1 - sin²x) dx
=∫(sin⁴x - sin^6x) dx
= ∫sin⁴x dx - ∫sin^6x dx
后面的看附图,自己整理吧
方法2:
原式=∫sin⁴x cos²x dx
=∫sin²x (sinxcosx)² dx
=∫sin²x * (sin2x / 2)² dx
=1/4 ∫(1 - cos2x)/2 * ( 1 - cos4x)/2 dx
=1/16 ∫(1 - cos2x) * ( 1 - cos4x) dx
=1/16 ∫(cos4xcos2x - cos2x - cos4x + 1) dx
=1/16 ∫((cos6x + cos2x) / 2 - cos2x - cos4x + 1) dx
=1/16 [ sin6x / 12 - sin2x / 4 - sin4x / 4 + x] + C
= sin6x / 192 -sin2x / 64 - sin4x / 64 + x / 16 + C
∫ (sin^4x)*(cos^2x) dx=1/16*x-1/64*sin4x-1/48*(sin2x)^3+C
解:∫ (sin^4x)*(cos^2x) dx
=∫ ((1-cos2x)/2)^2*((cos2x+1)/2) dx
=1/8∫ (1-cos2x))^2*(1+cos2x) dx
=1/8∫ (1-cos2x-(cos2x)^2+(cos2x)^3) dx
=1/8∫ 1 dx-1/8∫ cos2x dx-1/8∫ (cos2x)^2 dx+1/8∫ (cos2x)^3 dx
=1/8*x-1/16*sin2x-1/8∫ (cos4x+1)/2 dx+1/8∫ (1-(sin2x)^2)*cos2x dx
=1/8*x-1/16*sin2x-1/64*sin4x-1/16*x+1/16∫ (1-(sin2x)^2)dsin2x
=1/8*x-1/16*sin2x-1/64*sin4x-1/16*x+1/16*sin2x-1/48*(sin2x)^3+C
=1/16*x-1/64*sin4x-1/48*(sin2x)^3+C
扩展资料
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
9、∫ tanx dx = - ln|cosx| + C = ln|secx| + C
10、∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C