在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,oc在x轴正半轴上 OA=1,OC=2,点D在OC上OD=4/5
问在y轴上是否存在点P,直线PD与矩形对角线AC交于M,使得△DMC为等腰直角三角形?若存在,求出所有符合条件的P的坐标。哪位会做啊望告之,不是直接写P的坐标,要详细的过...
问在y轴上是否存在点P,直线PD与矩形对角线AC交于M,使得△DMC为等腰直角三角形?若存在,求出所有符合条件的P的坐标。
哪位会做啊望告之,不是直接写P的坐标,要详细的过程,明天中午前老师会检查,希望用初中知识,另我们没学过斜率不用这个方法,最好能用三角形边角关系相似解决....谢谢了... 展开
哪位会做啊望告之,不是直接写P的坐标,要详细的过程,明天中午前老师会检查,希望用初中知识,另我们没学过斜率不用这个方法,最好能用三角形边角关系相似解决....谢谢了... 展开
2个回答
展开全部
昨天老师刚刚讲过,便宜你了:
全盘奉上:
先给出ac的解析式;y=-x/2+1
(1)
若DC为底边,则点M的坐标为( 13/8,3/16 )
∴直线DM解析式为:y= x/2- 5/8
∴P(0,-5/8);
(2)
若DM为底,则CD=CM= 3/4
设PD交AB于点N,
易得AN=AM=根号5-3/4
易证
PO/PA=OD/AN
PO/PO+1=5/4/(根号5-3/4)
PO=5(根号5+2)/4
∴P(0,-5(根号5+2)/4 )
(3)
若CM为底,则CD=DM =3/4
做MG垂直OC
则MG/CG=1/2
再设mg=k cg=2k
列方程;
k^2+(2k-3/4)^2=(3/4)^2
k=3/5
MG=3/5
DG=6/5-3/4=9/20
容易知:PO/OD=MG/DG
PO=5/3
∴点P的坐标为(0,5/3)
全盘奉上:
先给出ac的解析式;y=-x/2+1
(1)
若DC为底边,则点M的坐标为( 13/8,3/16 )
∴直线DM解析式为:y= x/2- 5/8
∴P(0,-5/8);
(2)
若DM为底,则CD=CM= 3/4
设PD交AB于点N,
易得AN=AM=根号5-3/4
易证
PO/PA=OD/AN
PO/PO+1=5/4/(根号5-3/4)
PO=5(根号5+2)/4
∴P(0,-5(根号5+2)/4 )
(3)
若CM为底,则CD=DM =3/4
做MG垂直OC
则MG/CG=1/2
再设mg=k cg=2k
列方程;
k^2+(2k-3/4)^2=(3/4)^2
k=3/5
MG=3/5
DG=6/5-3/4=9/20
容易知:PO/OD=MG/DG
PO=5/3
∴点P的坐标为(0,5/3)
展开全部
(1)由题可知D(2,2) c(3,0)只需再求E坐标即可用三点式求解
(如果需要图的话,可以到这里看密码是带土)
E为两线交点(直线x=0和直线ED) 因为CD⊥DE且CD斜率为2-0/2-3=-2,所以DE斜率为1/2
用点斜式可得直线ED为y-2=0.5(x-2)
联系方程:①x=0②y-2=0.5(x-2)得E坐标为(0,1)
用三点式y=ax²+bx+c,代入(2,2)(3,0)(0,1),联立方程求出abc再代入三点式即可得出抛物线解析式
第(2)(3)问我不会
(如果需要图的话,可以到这里看密码是带土)
E为两线交点(直线x=0和直线ED) 因为CD⊥DE且CD斜率为2-0/2-3=-2,所以DE斜率为1/2
用点斜式可得直线ED为y-2=0.5(x-2)
联系方程:①x=0②y-2=0.5(x-2)得E坐标为(0,1)
用三点式y=ax²+bx+c,代入(2,2)(3,0)(0,1),联立方程求出abc再代入三点式即可得出抛物线解析式
第(2)(3)问我不会
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询