高中数学 圆锥曲线的参数方程

曲线C1:x=asect,y=btant(t为参数)与曲线C2:x=atanw,y=bsecw(w为参数)的离心率分别为e1和e2,则e1+e2的最小值为________... 曲线C1:x=asect,y=btant (t为参数) 与曲线C2:x=atanw,y=bsecw(w为参数)的离心率分别为e1和e2,则e1+e2的最小值为__________。 展开
春天的梧桐树cR226
2011-05-13 · TA获得超过404个赞
知道答主
回答量:287
采纳率:0%
帮助的人:185万
展开全部
C1:(x/a)^2-(y/b)^2=1
C2:(y/b)^2-(x/a)^2=1
e1=根号下(1+b^2/a^2)
e2=根号下(1+a^2/b^2)
e1+e2=t
t^2=2+a^2/b^2+b^2/a^2+2t
t^2-2t-(b^2/a^2+a^2/b^2+2)=0
然后就求根吧
可以设b^2/a^2+a^2/b^2=v(大于等于2)
△=4+4v+8=12+4v
tmin=(2+根号下(12+4v))/2((2-根号下(12+4v))/2)舍去)
所以当v取2时为最小值
即tmin=3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式