设二次函数f(x)=ax^2+bx+c(a不等于0)中的a,b,c均为奇数。 求证:方程f(x)=0无整数根。
展开全部
这个结论是错的。
比如f(x)=x^2+9x+c有两个不相等实根,此时a=1,b=9,c=1
比如f(x)=x^2+9x+c有两个不相等实根,此时a=1,b=9,c=1
追问
是无整数根啊啊啊、您在答什么T T、
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:当f(x)=0时 x=-b+-根号b2-4ac/2a
因为abc 均为奇数 所以b2为奇数,b2/2a不可能为整数,所以原方程无整数根
这是第一种情况
第二种,先假设有整数根时,abc都可为奇数
再用因式分解
ax2 +bx+c=a(x-q/a)(x-p/a)
则q/a+p/a为奇数=b,qp/a2为奇数=c
若p,q能被a整除,则可设p=am q=an 且mn 为奇数 则(p+q)/a=a(m+n)必为偶数,与命题相矛盾,所以原方程无整数根
因为abc 均为奇数 所以b2为奇数,b2/2a不可能为整数,所以原方程无整数根
这是第一种情况
第二种,先假设有整数根时,abc都可为奇数
再用因式分解
ax2 +bx+c=a(x-q/a)(x-p/a)
则q/a+p/a为奇数=b,qp/a2为奇数=c
若p,q能被a整除,则可设p=am q=an 且mn 为奇数 则(p+q)/a=a(m+n)必为偶数,与命题相矛盾,所以原方程无整数根
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询