高中数学排列组合题目

用0,1,2,3,4,5,6这7个数字,根据下列条件可以组合成多少个没有重复数字的数(1)个位,百位都是偶数的四位数(2)1,3,5三个数字顺序不变的无重复数字的六位数结... 用0,1,2,3,4,5,6这7个数字,根据下列条件可以组合成多少个没有重复数字的数
(1)个位,百位都是偶数的四位数
(2)1,3,5 三个数字顺序不变的无重复数字的六位数
结果分别算到多少?我算到216 和240 不知道对不对,就高手解答。谢谢!
展开
wangwei88min
2011-05-15 · TA获得超过7.1万个赞
知道大有可为答主
回答量:9884
采纳率:100%
帮助的人:5385万
展开全部
1)个位和百位都是偶数,那么因为个位和百位比较特殊,所以我们用特殊位置法:
个位和百位都是偶数,那么我们现在0, 2, 4, 6这四个偶数中选择2个排在个位和百位,然后其他几个数字任意排列,这里又要分两种情况考虑:
a)个位和百位中有一个0,那么先把0放在个位或者百位C(2,1)=2,然后剩下3个中选择一个偶数放在另外一个位置上C(3,1)=3
最后把剩下的五个数选择放在剩余位置上全排列A(5,2)=20
所以这种情况下的个数=2*3*20=120
b)个位和百位中没有一个是0,那么在三个偶数中选择两个放在个位和百位上全排列有A(3,2)=6,然后千位上从剩下的4个(因为要除去0)中选择一个有C(4,1)=4,最后十位上从剩下的4个树种选择一个C(4,1)=4
所以这种情况下的个数=6*4*4=96
因为满足题目的个数=120+96=216个,所以你是对的O(∩_∩)O哈!

2)因为要是我们不考虑1, 3, 5的顺序的话,我们的个数得到为
先从除了0的6位中心选择一个放在最高位C(6,1)=6,然后再把剩下的6为全排列在后面的5位上为A(6,5)
所以不考虑顺序的个数=6*A(6,5)
然而里面的数字包括了1,3,5 三个数的任意顺序,总共的顺序=A(3,3)
而满足题目的只有一种,所以满足题目的个数=6*A(6,5)/A(3,3)=720个
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式