已知关于x的方程2x平方-(√3-1)x+m=0的两根为sina和cosa,a属于(0,派).
求1.sina的平方/(sina-cosa)+cosa/(1-tana)的值2.m的值3.tana的值...
求 1.sina的平方/(sina-cosa)+cosa/(1-tana)的值
2.m的值
3.tana的值 展开
2.m的值
3.tana的值 展开
1个回答
展开全部
x的方程2x平方-(√3-1)x+m=0的两根为sina和cosa,
为便于化简,令sina=b,cosa=c,根据题意可得:b^2+c^2=1,b+c=(√3-1)/2,bc=m/2,tana=b/c。
解(1)sina的平方/(sina-cosa)+cosa/(1-tana)=b^2/(b-c)+c/(1-b/c)=b^2/(b-c)+c/(c-b)
=(b^2-c^2)/(b-c)=(b+c)(b-c)/(b-c)=b+c=(√3-1)/2
(2)b+c=(√3-1)/2;
(b+c)^2=1-√3/2;
b^2+c^2+2bc=1-√3/2;因为b^2+c^2=1;
2bc=-√3/2;即m=-√3/2
(3)tana=b/c;
m/2=bc,2/m=1/bc=(b^2+c^2)/bc=b/c+c/b=tana+1/tana=-√3/2;
tana+1/tana+√3/2=0;
tana^2+√3/2tana+1=0
tana=-3/√3;或tana=-1/√3
为便于化简,令sina=b,cosa=c,根据题意可得:b^2+c^2=1,b+c=(√3-1)/2,bc=m/2,tana=b/c。
解(1)sina的平方/(sina-cosa)+cosa/(1-tana)=b^2/(b-c)+c/(1-b/c)=b^2/(b-c)+c/(c-b)
=(b^2-c^2)/(b-c)=(b+c)(b-c)/(b-c)=b+c=(√3-1)/2
(2)b+c=(√3-1)/2;
(b+c)^2=1-√3/2;
b^2+c^2+2bc=1-√3/2;因为b^2+c^2=1;
2bc=-√3/2;即m=-√3/2
(3)tana=b/c;
m/2=bc,2/m=1/bc=(b^2+c^2)/bc=b/c+c/b=tana+1/tana=-√3/2;
tana+1/tana+√3/2=0;
tana^2+√3/2tana+1=0
tana=-3/√3;或tana=-1/√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询