已知数列an满足:a1=1/2,a1+a2+a3+...+an=n^2*an,求an的通项及Sn
1个回答
展开全部
由a1+a2+a3+...+an=n^2*an
则有a1+a2+a3+...+an+a(n+1)=(n+1)^2*a(n+1)
两式相减得
(n+1)^2*a(n+1)-n^2*an=a(n+1)
左边展开并整理得
(n^2+2n)*a(n+1)=n^2*an
(n+2)*a(n+1)=n*an
a(n+1)=n/(n+2) *an
即an=(n-1)/(n+1) *a(n-1)=(n-1)/(n+1) * (n-2)/n * a(n-1)=....
.....=(n-1)/(n+1) * (n-2)/n *.......* 3/5 * 2/4 * 1/3 *a1=2/(n(n+1)) * a1 =1/(n(n+1))
Sn=a1+a2+a3+..+an=1/2+1/(2*3)+1/(3*4)+...+1/(n(n+1))
裂项得Sn-(1-1/2)+(1/2-1/3)+(1/3-1/4)+...(1/n) - (1/(n+1))=1-1/(n+1)=n/n+1
则有a1+a2+a3+...+an+a(n+1)=(n+1)^2*a(n+1)
两式相减得
(n+1)^2*a(n+1)-n^2*an=a(n+1)
左边展开并整理得
(n^2+2n)*a(n+1)=n^2*an
(n+2)*a(n+1)=n*an
a(n+1)=n/(n+2) *an
即an=(n-1)/(n+1) *a(n-1)=(n-1)/(n+1) * (n-2)/n * a(n-1)=....
.....=(n-1)/(n+1) * (n-2)/n *.......* 3/5 * 2/4 * 1/3 *a1=2/(n(n+1)) * a1 =1/(n(n+1))
Sn=a1+a2+a3+..+an=1/2+1/(2*3)+1/(3*4)+...+1/(n(n+1))
裂项得Sn-(1-1/2)+(1/2-1/3)+(1/3-1/4)+...(1/n) - (1/(n+1))=1-1/(n+1)=n/n+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询