计算二重积分∫(0,1)dx∫(0,根号x)e^(-y²/2)dy
1个回答
展开全部
原式=∫dy∫e^(-y²/2)dx (作积分顺序变换)
=∫(1-y²)e^(-y²/2)dy
=∫e^(-y²/2)dy-∫y²e^(-y²/2)dy
=∫e^(-y²/2)dy-{[-ye^(-y²/2)]│+∫e^(-y²/2)dy} (应用分部积分法)
=∫e^(-y²/2)dy-[-e^(-1/2)+∫e^(-y²/2)dy]
=∫e^(-y²/2)dy+e^(-1/2)-∫e^(-y²/2)dy
=e^(-1/2)
=1/√e.
=∫(1-y²)e^(-y²/2)dy
=∫e^(-y²/2)dy-∫y²e^(-y²/2)dy
=∫e^(-y²/2)dy-{[-ye^(-y²/2)]│+∫e^(-y²/2)dy} (应用分部积分法)
=∫e^(-y²/2)dy-[-e^(-1/2)+∫e^(-y²/2)dy]
=∫e^(-y²/2)dy+e^(-1/2)-∫e^(-y²/2)dy
=e^(-1/2)
=1/√e.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |