已知 正数数列 的前n项和为sn ,且对于任意的n属于N+ ,有 Sn=1\4(an+1)^2 (1)求证{an} 为等差数列;(2

尘星石
2011-05-17 · TA获得超过1.9万个赞
知道大有可为答主
回答量:2883
采纳率:100%
帮助的人:4382万
展开全部
S1=a1 即 a1=(a1+1)^2/4, 即 a1^2+2a1+1=4a1,即(a1-1)^2=0,所以a1=1
S2=a1+a2=1+a2,即 1+a2=(a2+1)^2/4 ,即(a2-1)^2=4 因为这是一个正数数列,所以a2=3
假如这是一个等差数列,则a1=1,d=3-1=2。数列的通项公式为 an=2n-1

下面验证:
等差数列和公式:Sn= n(a1+an)/2
因为a1=1, an=2n-1
所以上式可以表示为 Sn=n(1+2n-1)/2 = n^2
而 (an+1)^2/4 =(2n-1+1)^2=n^2
所以(an+1)^2/4=n(a1+an)/2
所以这是一个等差数列。
手机用户16453
2011-05-28
知道答主
回答量:21
采纳率:0%
帮助的人:0
展开全部
等差数列和公式:Sn= n(a1+an)/2
因为a1=1, an=2n-1
所以上式可以表示为 Sn=n(1+2n-1)/2 = n^2
而 (an+1)^2/4 =(2n-1+1)^2=n^2
所以(an+1)^2/4=n(a1+an)/2
所以这是一个等差数列。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式