级数 n/(2的n次方)的敛散性

 我来答
Dilraba学长
高粉答主

2020-07-13 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411048

向TA提问 私信TA
展开全部

limn趋近于∞(n+1)/2的n+1次方*2的n次方/n=1/2小于1,所以收敛

级数理论是分析学的一个分支;它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。二者共同以极限为基本工具,分别从离散与连续两个方面,结合起来研究分析学的对象,即变量之间的依赖关系──函数。

扩展资料

级数的收敛问题是级数理论的基本问题。从级数的收敛概念可知,级数的敛散性是借助于其部分和数列Sm的敛散性来定义的。因此可从数列收敛的柯西准则得出级数收敛的柯西准则 :∑un收敛<=>任意给定正数ε,必有自然数N,当n>N,对一切自然数 p,有|u[n+1]+u[n+2]+…+u[n+p]|<ε,即充分靠后的任意一段和的绝对值可任意小。

级数收敛

如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,正项级数与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有上界,例如∑1/n!收敛,因为:Sm=1+1/2!+1/3!+···+1/m!<1+1+1/2+1/22+···+1/2^(m-1)<3(2^3表示2的3次方)。

瑾無風
2017-05-17 · TA获得超过172个赞
知道小有建树答主
回答量:99
采纳率:66%
帮助的人:58.8万
展开全部
收敛
lim(n->∞)(n+1)/(2^(n+1))*(2^n)/n=1/2
小于1
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
UrDpann5
2020-04-15
知道答主
回答量:1
采纳率:0%
帮助的人:627
展开全部
limn趋近于∞(n+1)/2的n+1次方*2的n次方/n=1/2小于1,所以收敛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式