如图,已知E,F为△ABC的边AB,BC的中点,在AC上取G,H两点,是AG=GH=HC,连接EG,FH并延长交与点D。
展开全部
连结BG、BH,连结BD交AC于O。在三角形ABH中,EG为此三角形的中位线,则:EG//BH,即:GD//BH。同理可证:BG//DH,则四边形BGDH为平行四边形,所以BO=DO,且GO=HO,因AG=CH,所以AO=CO,即:AO=CO且BO=DO,所以四边形ABCD为平行四边形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
BD交AC于O,连结BG,BH
∵E是AB中点,AG=GH
∴EG是△ABH的一条中位线
∴EG//BH,即GD//BH
同理可证BG//DH
∴四边形BHDG是平行四边形。
∴BO=OD,GO=OH
又∵AG=HC
∴AG+GO=HC+OH
即AO=OC
又BO=OD
∴四边形ABCD是平行四边形
∵E是AB中点,AG=GH
∴EG是△ABH的一条中位线
∴EG//BH,即GD//BH
同理可证BG//DH
∴四边形BHDG是平行四边形。
∴BO=OD,GO=OH
又∵AG=HC
∴AG+GO=HC+OH
即AO=OC
又BO=OD
∴四边形ABCD是平行四边形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询