3个回答
2011-05-17
展开全部
【证明】:证明:做PQ⊥BC于Q
因BE=ED
∴∠EBD=∠EDB,
∵BC‖AD
∴∠CBD=∠EDB
∴∠CBD=∠EBD
∴BD为∠CBE平分线
∵PF⊥BE,BP公用
∴△BFP≌△BQP
∴PF=PQ
∵PG⊥AD
∴Q、P、G三点共线
∴QG=AB
∴PF+PG=PQ+PG=QG=AB
∴PF+PG=AB
符合你的图?
因BE=ED
∴∠EBD=∠EDB,
∵BC‖AD
∴∠CBD=∠EDB
∴∠CBD=∠EBD
∴BD为∠CBE平分线
∵PF⊥BE,BP公用
∴△BFP≌△BQP
∴PF=PQ
∵PG⊥AD
∴Q、P、G三点共线
∴QG=AB
∴PF+PG=PQ+PG=QG=AB
∴PF+PG=AB
符合你的图?
展开全部
证明:做PQ⊥BC于Q
因BE=ED
∴∠EBD=∠EDB,
∵BC‖AD
∴∠CBD=∠EDB
∴∠CBD=∠EBD
∴BD为∠CBE平分线
∵PF⊥BE,BP公用
∴△BFP≌△BQP
∴PF=PQ
∵PG⊥AD
∴Q、P、G三点共线
∴QG=AB
∴PF+PG=PQ+PG=QG=AB
∴PF+PG=AB
因BE=ED
∴∠EBD=∠EDB,
∵BC‖AD
∴∠CBD=∠EDB
∴∠CBD=∠EBD
∴BD为∠CBE平分线
∵PF⊥BE,BP公用
∴△BFP≌△BQP
∴PF=PQ
∵PG⊥AD
∴Q、P、G三点共线
∴QG=AB
∴PF+PG=PQ+PG=QG=AB
∴PF+PG=AB
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
oo
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询