求大神解决第三题,谢谢
1个回答
展开全部
3、说明:^——表示次方
y=e^x
y(0)=1
y(1)=e
Vx=∫(0,1)π(e^x)^2dx
=π/2∫(0,1)e^(2x)d(2x)
=π/2e^(2x)|(0,1)
=π/2[e^(2×1)-e^(2×0)]
=π/2(e^2-1)
x=lny
Vy=∫(1,e)π(lny)^2dy
=πy(lny)^2|(1,e)-π∫(1,e)y·2lny·1/ydy
=π[e(lne)^2-1(ln1)^2]-2π∫(1,e)lnydy
=πe-2πylny|(1,e)+2π∫(1,e)y·1/ydy
=πe-2π[elne-1(ln1)]+2πy|(1,e)
=πe-2πe+2π(e-1)
=-πe+2πe-2π
=πe-2π
=π(e-2)
y=e^x
y(0)=1
y(1)=e
Vx=∫(0,1)π(e^x)^2dx
=π/2∫(0,1)e^(2x)d(2x)
=π/2e^(2x)|(0,1)
=π/2[e^(2×1)-e^(2×0)]
=π/2(e^2-1)
x=lny
Vy=∫(1,e)π(lny)^2dy
=πy(lny)^2|(1,e)-π∫(1,e)y·2lny·1/ydy
=π[e(lne)^2-1(ln1)^2]-2π∫(1,e)lnydy
=πe-2πylny|(1,e)+2π∫(1,e)y·1/ydy
=πe-2π[elne-1(ln1)]+2πy|(1,e)
=πe-2πe+2π(e-1)
=-πe+2πe-2π
=πe-2π
=π(e-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询