求解一道初三数学题,急急急,图中第16题。。在线等

 我来答
匿名用户
2019-05-29
展开全部

如图所示,过点G作GH⊥AD,垂足H在AD上,可知GH即为点G到AD的距离。

因为四边形ABCD为正方形,四边形AEFG为矩形,

易知有∠C=∠B=∠AHG=90°,∠CEF=∠BAE=∠HAG,AG=EF,

所以△CEF≌△HAG(AAS),△CEF∽△BAE,有CF=GH,CF/BE=CE/AB,

设CF=x,CE=y,则BE=4-y,即x/(4-y)=y/4,化简得x=(4y-y²)/4,

令(4y-y²)/4=[(4-y)/2]×(y/2),则由基本不等式的变形ab≤[(a+b)/2]²可知:

[(4-y)/2]×(y/2)≤[(4-y+y)/4]²=1,当且仅当(4-y)/2=y/2,即y=2时候取等号,

所以CF=GH=x的最大值为1,即点G到AD距离的最大值为1。

百度网友da278ac
2019-05-29 · TA获得超过968个赞
知道小有建树答主
回答量:3149
采纳率:52%
帮助的人:232万
展开全部
设B(0,0) C(4,0) E(x,0)(0<x<4) A(0,4) AE⊥EF,∠BEA+∠CEF=90°
∠B=∠C=90°,∠BAE+∠BEA=90°
∠BAE=∠CEF
△BAE∽△CEF

AB/CE=BE/CF

AB=4,BE=x,CE=4-x,CF=x(4-x)/4=-1/4(x-2)^2+1
G到AD距离即F的纵坐标,最大值是1
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式