如图所示,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE
(1)试探究,四边形BECF是什么特殊的四边形(2)当角A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论....
(1)试探究,四边形BECF是什么特殊的四边形
(2)当角A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论. 展开
(2)当角A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论. 展开
5个回答
展开全部
解:(1)四边形BECF是菱形.
证明:EF垂直平分BC
∴BF=FC,BE=EC
∴∠ABC=∠BCE
∵∠ACB=90°
∴∠ABC+∠A=90°
∠BCE+∠ACE=90°
∴∠ACE=∠A
∴EC=AE
∴BE=AE
∵CF=AE
∴BE=EC=CF=BF
∴四边形BECF是菱形
(2)当∠A=45°时,菱形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠BCE=45°,
∴∠EBF=2∠ACE=90°
∴菱形BECF是正方形.
证明:EF垂直平分BC
∴BF=FC,BE=EC
∴∠ABC=∠BCE
∵∠ACB=90°
∴∠ABC+∠A=90°
∠BCE+∠ACE=90°
∴∠ACE=∠A
∴EC=AE
∴BE=AE
∵CF=AE
∴BE=EC=CF=BF
∴四边形BECF是菱形
(2)当∠A=45°时,菱形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠BCE=45°,
∴∠EBF=2∠ACE=90°
∴菱形BECF是正方形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)四边形BECF是菱形.
证明:EF垂直平分BC,
∴BF=FC,BE=EC,
∴∠CBE=∠BCE,
∵∠ACB=90°,
∴∠CBE+∠A=90°,∠ACE+∠BCE=90°,
∴∠ACE=∠A,
∴EC=AE,
∴BE=AE,
∵CF=AE,
∴BE=EC=CF=BF,
∴四边形BECF是菱形.
(2)当∠A=45°时,菱形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠CBE=45°,
∴∠EBF=2∠A=90°,
∴菱形BECF是正方形.
证明:EF垂直平分BC,
∴BF=FC,BE=EC,
∴∠CBE=∠BCE,
∵∠ACB=90°,
∴∠CBE+∠A=90°,∠ACE+∠BCE=90°,
∴∠ACE=∠A,
∴EC=AE,
∴BE=AE,
∵CF=AE,
∴BE=EC=CF=BF,
∴四边形BECF是菱形.
(2)当∠A=45°时,菱形BECF是正方形.
证明:∵∠A=45°,∠ACB=90°,
∴∠CBE=45°,
∴∠EBF=2∠A=90°,
∴菱形BECF是正方形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵BC的垂直平分线EF交BC
∴∠FDB=90 BD=DC
∴BE=EC FB=FC
∴∠EBC=∠BCP
∴∠BCA=90
∴∠CBA+∠A=90
∵∠CBA+∠FEB=90 ∴∠FEB=∠A ∴FE‖CA
∴∠A=∠EFC ∵∠BFE=∠EFC ∴∠BFE=∠FEB
∴△BDF≌△BED(AAS)∴FD=DE∴BECF为平行四边形
∵FE⊥BC∴BECF为菱形
∴∠FDB=90 BD=DC
∴BE=EC FB=FC
∴∠EBC=∠BCP
∴∠BCA=90
∴∠CBA+∠A=90
∵∠CBA+∠FEB=90 ∴∠FEB=∠A ∴FE‖CA
∴∠A=∠EFC ∵∠BFE=∠EFC ∴∠BFE=∠FEB
∴△BDF≌△BED(AAS)∴FD=DE∴BECF为平行四边形
∵FE⊥BC∴BECF为菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
梯形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询