展开全部
tan(π/12+α)=√2,tan(β-π/3)=2√2
tan(β-π/12)=tan(β-π/3+π/4)=[tan(β-π/3)+tan(π/4)]/[1-tan(β-π/3)*tan(π/4)]=(2√2+1)/(1-2√2)=-(9+4√2)/7
所以tan(α+β)=tan[(π/12+α)+(β-π/12)]=[tan(π/12+α)+tan(β-π/12)]/[1-tan(π/12+α)*tan(β-π/12)]=[√2-(9+4√2)/7]/[1-√2*(9+4√2)/7]=(84√2-63)/161
tan(β-π/12)=tan(β-π/3+π/4)=[tan(β-π/3)+tan(π/4)]/[1-tan(β-π/3)*tan(π/4)]=(2√2+1)/(1-2√2)=-(9+4√2)/7
所以tan(α+β)=tan[(π/12+α)+(β-π/12)]=[tan(π/12+α)+tan(β-π/12)]/[1-tan(π/12+α)*tan(β-π/12)]=[√2-(9+4√2)/7]/[1-√2*(9+4√2)/7]=(84√2-63)/161
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
tan(α+β-π/4)
=tan(π/12+α+β-π/3)
=[tan(π/12+α)+tan(β-π/3)]/[1-tan(π/12+α)tan(β-π/3)]
=(√2+2√2)/[1-√2*2√2]
=3√2/(1-4)
=-√2
tan(α+β-π/4)
=[tan(α+β)-tanπ/4]/[1+tan(α+β)tanπ/4]
=[tan(α+β)-1]/[1+tan(α+β)]
[tan(α+β)-1]/[1+tan(α+β)]=-√2
tan(α+β)-1=-√2[1+tan(α+β)]
tan(α+β)-1=-√2-√2tan(α+β)
tan(α+β)+√2tan(α+β)=1-√2
(1+√2)tan(α+β)=1-√2
tan(α+β)=(1-√2)/(1+√2)
tan(α+β)=(1-√2)^2/(1+√2)(1-√2)
tan(α+β)=-(1-√2)^2
tan(α+β)=2√2-3
=tan(π/12+α+β-π/3)
=[tan(π/12+α)+tan(β-π/3)]/[1-tan(π/12+α)tan(β-π/3)]
=(√2+2√2)/[1-√2*2√2]
=3√2/(1-4)
=-√2
tan(α+β-π/4)
=[tan(α+β)-tanπ/4]/[1+tan(α+β)tanπ/4]
=[tan(α+β)-1]/[1+tan(α+β)]
[tan(α+β)-1]/[1+tan(α+β)]=-√2
tan(α+β)-1=-√2[1+tan(α+β)]
tan(α+β)-1=-√2-√2tan(α+β)
tan(α+β)+√2tan(α+β)=1-√2
(1+√2)tan(α+β)=1-√2
tan(α+β)=(1-√2)/(1+√2)
tan(α+β)=(1-√2)^2/(1+√2)(1-√2)
tan(α+β)=-(1-√2)^2
tan(α+β)=2√2-3
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询