sinα+cosα=1/根号2,求tan²α+1/tan²α的值是?
2个回答
展开全部
sinα+cosα=1/根号2,所以(sinα+cosα)^2=1/2
即(sinα)^2+(cosα)^2+2sinαcosα=1/2
所以sinαcosα=-1/4
tan²α+1/tan²α
=(sinα)^2/(cosα)^2+(cosα)^2/(sinα)^2
=[(sinα)^4+(cos)^4]/(sinαcosα)^2
={[(sinα)^2+(cosα)^2]^2-2(sinαcosα)^2}/(sinαcosα)^2
=[1-2*(-1/4)^2]/(-1/4)^2
=14
即(sinα)^2+(cosα)^2+2sinαcosα=1/2
所以sinαcosα=-1/4
tan²α+1/tan²α
=(sinα)^2/(cosα)^2+(cosα)^2/(sinα)^2
=[(sinα)^4+(cos)^4]/(sinαcosα)^2
={[(sinα)^2+(cosα)^2]^2-2(sinαcosα)^2}/(sinαcosα)^2
=[1-2*(-1/4)^2]/(-1/4)^2
=14
追问
(sinα)^2/(cosα)^2+(cosα)^2/(sinα)^2 这步到这步
:[(sinα)^4+(cos)^4]/(sinαcosα)^2。怎么来的啊?
追答
几个分数相加化为同分母分数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询