这道数学题求解
2个回答
展开全部
y= x-2sinx
y' =1-2cosx
y'=0
1-2cosx =0
cosx =1/2
x=π/3 or 5π/3
y''=2sinx
y''(π/3) >0 (min)
y''(5π/3) <0 ( max)
max y = y(5π/3) = 5π/3 - 2sin(5π/3) = 5π/3 +√3
min y = y(π/3) = π/3 - 2sin(π/3) = π/3 - √3
单调
增加 =[ π/3, 5π/3]
减小 = [ 0, π/3] U[ 5π/3, 2π]
y' =1-2cosx
y'=0
1-2cosx =0
cosx =1/2
x=π/3 or 5π/3
y''=2sinx
y''(π/3) >0 (min)
y''(5π/3) <0 ( max)
max y = y(5π/3) = 5π/3 - 2sin(5π/3) = 5π/3 +√3
min y = y(π/3) = π/3 - 2sin(π/3) = π/3 - √3
单调
增加 =[ π/3, 5π/3]
减小 = [ 0, π/3] U[ 5π/3, 2π]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询