在梯形ABCD中,AB∥CD,∠A+∠B=90°,E、F分别是AB、CD的中点,求证:EF=二分之一(AB-CD)
2个回答
展开全部
过点F作FG∥DA交AB于G,再过点F作FH∥CB交AB于H。
容易证得:∠FGE=∠A,∠FHE=∠B,
且DFGA、FCBH都是平行四边形,得:AG=DF,HB=FC。
显然有:GH=AB-AG-HB=AB-DF-FC=AB-CD。
由∠FGE=∠A,∠FHE=∠B,∠A+∠B=90°,得:∠FGE+∠FHE=90°,
即:∠GFH=90°。
因为E、F分别是AB、CD的中点,所以:DF=FC,DE=EB,
结合AG=DF,HB=FC,得:DE-AG=EB-HB,即:EG=EH,所以:EF=GH/2,
于是:EF=(AB-CD)/2。
容易证得:∠FGE=∠A,∠FHE=∠B,
且DFGA、FCBH都是平行四边形,得:AG=DF,HB=FC。
显然有:GH=AB-AG-HB=AB-DF-FC=AB-CD。
由∠FGE=∠A,∠FHE=∠B,∠A+∠B=90°,得:∠FGE+∠FHE=90°,
即:∠GFH=90°。
因为E、F分别是AB、CD的中点,所以:DF=FC,DE=EB,
结合AG=DF,HB=FC,得:DE-AG=EB-HB,即:EG=EH,所以:EF=GH/2,
于是:EF=(AB-CD)/2。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询