3个回答
展开全部
∫x^2/(1+x)dx
=∫(x^2-1+1)dx/(1+x)
=∫(x^2-1)dx/(x+1)+∫dx/(x+1)
=∫(x-1)dx+ln|x+1|
=x^2/2-x+ln|x+1| +C
扩展资料
由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。
这表明G(x)与F(x)只差一个常数.因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C|-∞<C<+∞}。
由此可知,如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。
因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。
展开全部
;计算不定积分x平方倍一加x平方分之二加x平方过程答:∫x^2/(1+x)dx=∫(x^2-1+1)dx/(1+x)=∫(x^2-1)dx/(x+1)+∫dx/(x+1)=∫(x-1)dx+ln|x+1|=x^2/2-x+ln|x+1| +C
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询