在数列an中,已知a1=-1,且an+1=2an+3n-4(n属于N*)
1个回答
展开全部
解:(Ⅰ)证明:∵a
n+1
=2a
n
+3n-4(n∈N
*
)∴当n≥铅山袭2时,a
n
=2a
n-1
+3n-7
两式相减,得,a
n+1
-a
n
=2(a
n
-a
n-1
)+3,即,槐兄a
n+1
-a
n
+3=2(a
n
-a
n-1
+3)
∴
an+1-an+3
an-an-1+3
=2
∴数列{a
n+1
-a
n
+3}是公唯衡比为2的等比数列
(Ⅱ)∵数列{a
n+1
-a
n
+3}是公比为2的等比数列,且a
1
=-1,a
2
=-3
∴a
2
-a
1
+3=1∴a
n+1
-a
n
+3=2
n-1
,
a
n+1
-a
n
=2
n-1
-3
∴a
n+
-a
n-1
=2
n-2
-3
a
n-1
-a
n-2
=2
n-3
-3
…
a
2
-a
1
=2
0
-3
∴a
n+1
-a
1
=
2n-1-1
2
-3n
∴an=
2n-1-1
2
-3n+2;
(Ⅲ)由(Ⅱ)知,an=
2n-1-1
2
-3n+2
∴T
n
.=
20-1
2
-3+2+
21-1
2
-3×2+2+
22-1
2
-3×3+2+…+
2n-1-1
2
-3n+2
=
20+21+…+2n-1-n
2
+2n-3n
2
=
1
2
(2n-3n2-1)
n+1
=2a
n
+3n-4(n∈N
*
)∴当n≥铅山袭2时,a
n
=2a
n-1
+3n-7
两式相减,得,a
n+1
-a
n
=2(a
n
-a
n-1
)+3,即,槐兄a
n+1
-a
n
+3=2(a
n
-a
n-1
+3)
∴
an+1-an+3
an-an-1+3
=2
∴数列{a
n+1
-a
n
+3}是公唯衡比为2的等比数列
(Ⅱ)∵数列{a
n+1
-a
n
+3}是公比为2的等比数列,且a
1
=-1,a
2
=-3
∴a
2
-a
1
+3=1∴a
n+1
-a
n
+3=2
n-1
,
a
n+1
-a
n
=2
n-1
-3
∴a
n+
-a
n-1
=2
n-2
-3
a
n-1
-a
n-2
=2
n-3
-3
…
a
2
-a
1
=2
0
-3
∴a
n+1
-a
1
=
2n-1-1
2
-3n
∴an=
2n-1-1
2
-3n+2;
(Ⅲ)由(Ⅱ)知,an=
2n-1-1
2
-3n+2
∴T
n
.=
20-1
2
-3+2+
21-1
2
-3×2+2+
22-1
2
-3×3+2+…+
2n-1-1
2
-3n+2
=
20+21+…+2n-1-n
2
+2n-3n
2
=
1
2
(2n-3n2-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询