已知命题p:对于R上的增函数f(x)和任意的a,b属于R,若a+b>=0,则f(a)+f(b)>=f(-a)+f(-b)的逆命题真假并证明 1个回答 #热议# 什么是淋病?哪些行为会感染淋病? PanchoLeung 2011-05-21 · TA获得超过4229个赞 知道小有建树答主 回答量:1630 采纳率:75% 帮助的人:531万 我也去答题访问个人页 关注 展开全部 逆命题:对于R上的增函数f(x)和任意的a,b属于R,若f(a)+f(b)>=f(-a)+f(-b),则a+b>=0先证明原命题的否命题,若a+b<0,则f(a)+f(b)<f(-a)+f(-b).因为a+b<0,所以a<-b,且b<-a。所以f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b)。即原命题的否命题为真,而原命题的否命题与原命题逆命题的逆否命题同真。所以逆命题都是真命题 本回答由提问者推荐 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 其他类似问题 2022-06-10 函数y=f(x)是R上的增函数,若f(a)+f(b)<f(-a)+f(-b),则a+b<0,判断正误并证明 2022-05-17 对任意a,b属于R,都有f(a+b)=f(a)+f(b)-1,且当x>0时,有f(x)>1 证明f(x)在R上是增函数 2011-11-19 已知函数f(x)在R上为增函数,a,b∈R,命题:若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).写出它的逆否命题,判断 24 2010-08-25 已知函数f(x)在R上是增函数, a,b属于R.证明命题:若a+b大于等于0,则f(a)+f(b)大于等于f(-a)+f(-b)是真命题 31 2020-01-31 已知f(x)在R上为增函数,若a+b>0,则有f(a)+f(b)>f(-a)+f(-b) 4 2016-04-21 已知f(x)是R上的增函数,a,b∈R.证明下面两个命题:(1)若a+b>0,则f(a)+f(b)>f(-a)+f(-b 2 2010-11-22 已知a,b属于R,函数f(x)在R上为增函数,对于命题“若a+b>=0,则f(a)+f(b)>=f(-a)+f(-b)”写出它的... 9 2013-01-12 已知定义在R上的增函数f(x),有下列命题: 如果a+b≥0,那么f(a)+f(b) ≥f(-a)+f(-b). 4 为你推荐: