离散数学:证明四阶群g必为循环群或klein群

 我来答
兆秀花都己
2019-11-20 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:31%
帮助的人:776万
展开全部
证明
由拉格郎日定理可知,四阶群的元素的阶一定能整除群的阶4,故四阶群的元素的阶只能是1(幺元是唯一的1阶元),2,4,如果有一个元是4阶元,则该元自乘能生成群的所有元素,此时它是循环群,这个4阶元素是该循环群的生成元,否则如果除幺元外,所有的元均是2阶元,则此时该群正是4阶klein群.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式