
当x,y各为多少时(x+2y)²-2xy-2x-2y+8的值 最小 求详细过程
展开全部
x^2+4xy+4y^2-2xy-2x-2y+8
=x^2+2xy+4y^2-2x-2y+8
=(x^2+2xy+y^2)+3y^2-2x-2y+8
=(x+y)^2+3y^2-2(x+y)+1+7
=[(x+y)^2-2(x+y)+1]+3y^2+7
=[(x+y)-1]^2+3y^2+7
最小值为7,所以同时满足y=0,x+y-1=0
3y^2=0 ∴y=0
x+y-1=0 所以x=1
=x^2+2xy+4y^2-2x-2y+8
=(x^2+2xy+y^2)+3y^2-2x-2y+8
=(x+y)^2+3y^2-2(x+y)+1+7
=[(x+y)^2-2(x+y)+1]+3y^2+7
=[(x+y)-1]^2+3y^2+7
最小值为7,所以同时满足y=0,x+y-1=0
3y^2=0 ∴y=0
x+y-1=0 所以x=1
展开全部
(x+2y)²-2xy-2x-2y+8
=x^2+4xy+4y^2-2xy-2x-2y+8
=x^2+2xy+4y^2-2x-2y+8
=(x+y)^2+3y^2-2(x+y)+1+7
=[(x+y)^2-(x+y)+1]+3y^2+7
=(x+y-1)^2+3y^2+7
该式最小值为7,即同时满足y=0,x+y-1=0是上式大于等于7,所以x=1,y=0
=x^2+4xy+4y^2-2xy-2x-2y+8
=x^2+2xy+4y^2-2x-2y+8
=(x+y)^2+3y^2-2(x+y)+1+7
=[(x+y)^2-(x+y)+1]+3y^2+7
=(x+y-1)^2+3y^2+7
该式最小值为7,即同时满足y=0,x+y-1=0是上式大于等于7,所以x=1,y=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x^2+4xy+4y^2-2xy-2x-2y+8
=x^2+2xy+4y^2-2x-2y+8
=(x^2+2xy+y^2)+3y^2-2x-2y+8
=(x+y)^2+3y^2-2(x+y)+1+7
=[(x+y)^2-2(x+y)+1]+3y^2+7
=[(x+y)-1]^2+3y^2+7
因为除7外的两个式子都大于等于0,所以当两式同为0时有最小值为7
3y^2=0 ;y=0
x+y-1=0 ;x=1
写的详细,自己简化下
=x^2+2xy+4y^2-2x-2y+8
=(x^2+2xy+y^2)+3y^2-2x-2y+8
=(x+y)^2+3y^2-2(x+y)+1+7
=[(x+y)^2-2(x+y)+1]+3y^2+7
=[(x+y)-1]^2+3y^2+7
因为除7外的两个式子都大于等于0,所以当两式同为0时有最小值为7
3y^2=0 ;y=0
x+y-1=0 ;x=1
写的详细,自己简化下
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询