f(x)dx=(b-a)f(a+b/2)+(b-a)/24f()

利用二阶泰勒公式证明:设函数f(x)二阶可导,求证,存在ξ∈(a,b),使得|(上b,下a)∫f(x)dx-(b-a)f((a+b)/2)|≤(M/24)(b-a)^3,... 利用二阶泰勒公式证明:设函数f(x)二阶可导,求证,存在ξ∈(a,b),使得|(上b,下a)∫f(x)dx-(b-a)f((a+b)/2)|≤(M/24)(b-a)^3,其中M=max(x∈[a,b])|f''(x)| 展开
 我来答
百度网友69b87cffb69
2020-07-03 · TA获得超过1114个赞
知道小有建树答主
回答量:553
采纳率:100%
帮助的人:9.5万
展开全部
泰勒公式在(a+b)/2处展开到第二项,余项写成拉格朗日余项,两边各项从a到b积分(一阶导数那项会消掉)然后把剩下的第一项移到左边,并进积分号里,就是待证式的左边.右边把二阶导数(拉格朗日余项里那个)放成M,剩下的自己积出来,就是(b-a)^3/24
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式