将一个大三角形,分成4个面积相等小三角形,怎么分?{有图解吗)
将一个大三角形,分成4个面积相等小三角形分法:
取三角形两腰的中点,连接连个中点AB,取出三角形的底边的中点,依次与腰上的中点相连接,就把三角形分割成4个相等的三角形了。
扩展资料
各类三角形求面积方式如下所示:
1.已知三角形底a,高h,则 S=ah/2
2.已知三角形三边a,b,c,则
(海伦公式)(p=(a+b+c)/2)
S=sqrt[p(p-a)(p-b)(p-c)]
=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
3.已知三角形两边a,b,这两边夹角C,则S=1/2
absinC,即两夹边之积乘夹角的正弦值。
4.设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
5.设三角形三边分别为a、b、c,外接圆半径为R
则三角形面积=abc/4R
将一个大三角形,分成4个面积相等小三角形分法:
取三角形两腰的中点,连接连个中点AB,取出三角形的底边的中点,依次与腰上的中点相连接,就把三角形分割成3个相等的三角形了。
扩展资料
三角形的相关性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。推论:三角形的一个外角大于任何一个和它不相邻的内角。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
8、直角三角形的两条直角边的平方和等于斜边的平方(勾股定理)。勾股定理逆定理:如果三角形的三边长a,b,c满足a²+b²=c² ,那么这个三角形是直角三角形。
9、直角三角形斜边的中线等于斜边的一半。
10、三角形的三条角平分线交于一点,三条高线的所在直线交于一点,三条中线交于一点。
11、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
12、 等底同高的三角形面积相等。
13、3底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
14、三角形的任意一条中线将这个三角形分为两个面积相等的三角形。
15、等腰三角形顶角的角平分线和底边上的高、底边上的中线在一条直线上(三线合一)。
16、三角形具有稳定性。
参考资料:百度百科—三角形
法二:取三边中点,将其中一点分别连其它两点及其对角
可以画图吗
嗯