有十二个球,大小形状相同。其中一个重量与其他十一个不同,现在要求用一没有砝码的天平称三次找出那个球
3个回答
展开全部
首先,把12个小球分成三等份,每份四只。
拿出其中两份放到天平两侧称(第一次)
情况1:天平平衡
那么那八个拿上去称的小球都是正常的,特殊的在四个里面。
把剩下四个小球拿出三个放到一边,另一边放三个正常的小球(第二次)
情况1-1:天平平衡
特殊的是剩下的那个。从正常的里面取出任意一个和特殊的那个分别放在天平的两边,即知道特殊的那个球是轻是重了。(第三次)
情况1-2:天平不平衡
特殊的球在天平上面的那三个里,而且知道是重还是轻了。
从剩下三个中拿两个来称。(第三次)
情况1-2-1天平平衡
特殊的球是剩下的那个,而且也知道轻重了。
情况1-2-2天平不平衡
根据上面知道的特殊球的轻重特征就知道哪个是特殊球了。
情况2:天平不平衡
特殊的小球在放在天平上的那八个里面。
把重的一侧四个球记为A1A2A3A4,轻的记为B1B2B3B4。
剩下的确定为四个正常的记为C。
把A1B2B3B4放到一边,B1和三个正常的C小球放一边。(第二次)
情况2-1:天平平衡
特殊小球在A2A3A4里面,而且知道特殊小球比较重。
把A2A3称一下,就知道三个里面哪个是特殊的,也知道轻重了。(第三次)
情况2-2:天平不平衡,A1的那边比较重
特殊的小球在A1和B1之间。
随便拿一个和正常的称,就知道哪个特殊了,也知道轻重了。(第三次)
情况2-3:天平不平衡,B1那边比较重
特殊小球在B2B3B4中间,而且知道特殊小球比较轻。
把B2B3称一下,就知道哪个是特殊的了,也知道轻重了。(第三次)
拿出其中两份放到天平两侧称(第一次)
情况1:天平平衡
那么那八个拿上去称的小球都是正常的,特殊的在四个里面。
把剩下四个小球拿出三个放到一边,另一边放三个正常的小球(第二次)
情况1-1:天平平衡
特殊的是剩下的那个。从正常的里面取出任意一个和特殊的那个分别放在天平的两边,即知道特殊的那个球是轻是重了。(第三次)
情况1-2:天平不平衡
特殊的球在天平上面的那三个里,而且知道是重还是轻了。
从剩下三个中拿两个来称。(第三次)
情况1-2-1天平平衡
特殊的球是剩下的那个,而且也知道轻重了。
情况1-2-2天平不平衡
根据上面知道的特殊球的轻重特征就知道哪个是特殊球了。
情况2:天平不平衡
特殊的小球在放在天平上的那八个里面。
把重的一侧四个球记为A1A2A3A4,轻的记为B1B2B3B4。
剩下的确定为四个正常的记为C。
把A1B2B3B4放到一边,B1和三个正常的C小球放一边。(第二次)
情况2-1:天平平衡
特殊小球在A2A3A4里面,而且知道特殊小球比较重。
把A2A3称一下,就知道三个里面哪个是特殊的,也知道轻重了。(第三次)
情况2-2:天平不平衡,A1的那边比较重
特殊的小球在A1和B1之间。
随便拿一个和正常的称,就知道哪个特殊了,也知道轻重了。(第三次)
情况2-3:天平不平衡,B1那边比较重
特殊小球在B2B3B4中间,而且知道特殊小球比较轻。
把B2B3称一下,就知道哪个是特殊的了,也知道轻重了。(第三次)
展开全部
先分成 4 4 4三堆,任选两堆称
①若相等,取剩下的一堆,分112,取11称;再取剩下的2里取一个与刚才的1称,相等则是剩下的不同,不等则就是这新的一个
①若相等,取剩下的一堆,分112,取11称;再取剩下的2里取一个与刚才的1称,相等则是剩下的不同,不等则就是这新的一个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
那个质量不一样的有没有说是轻一点还是重一点呢
追问
没有...!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询