初三数学几何证明的两道题。
1.在正三角形ABC中,P是边CB上任意一点,联接AP,过点P做∠APQ=60°,点E是CB延长线上一点,PQ与∠ABE的平分线交于点Q,求证AP=PQ2.在正方形ABC...
1.在正三角形ABC中,P是边CB上任意一点,联接AP,过点P做∠APQ=60°,点E是CB延长线上一点,PQ与∠ABE的平分线交于点Q,求证AP=PQ
2.在正方形ABCD中,P是对角线BD上任意一点,联接AP,过点P,做PQ⊥AP,与直线DC相交于点Q,求证AP=PQ 展开
2.在正方形ABCD中,P是对角线BD上任意一点,联接AP,过点P,做PQ⊥AP,与直线DC相交于点Q,求证AP=PQ 展开
展开全部
1、过点P作PD∥AC,交AB于点D
∴△PBD是等边三角形
∴∠PDB=∠DPB=60°,PD=PB
∴∠ADP=120°
∵BQ平分∠ABE
∴∠PBQ=120°=∠ADP
∵∠BPD=∠APQ=60°
∴∠APD=∠QPB
∴△APD≌△QPB
∴PA=PQ
∵∠APQ=60°
∴△PAQ是等边三角形
∴AP=PQ
2、过点P作PE⊥AD于E,作PF⊥CD于F
∴四边形PEDF是正方形
∴PE=PF,∠EPF=90°
∴∠APQ=90°
∴∠APE=∠QPF
∴△PAE≌△PQF
∴AP=PQ
∴△PBD是等边三角形
∴∠PDB=∠DPB=60°,PD=PB
∴∠ADP=120°
∵BQ平分∠ABE
∴∠PBQ=120°=∠ADP
∵∠BPD=∠APQ=60°
∴∠APD=∠QPB
∴△APD≌△QPB
∴PA=PQ
∵∠APQ=60°
∴△PAQ是等边三角形
∴AP=PQ
2、过点P作PE⊥AD于E,作PF⊥CD于F
∴四边形PEDF是正方形
∴PE=PF,∠EPF=90°
∴∠APQ=90°
∴∠APE=∠QPF
∴△PAE≌△PQF
∴AP=PQ
追问
第二个为什么是正方形。。
追答
首先可得到三个角是直角,即得矩形
而P是∠ADC角平分线上一点,得PE=PF
从而是正方形
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询