证明:当n趋于无穷时,n的阶乘除以n的n次方的极限等于0.
3个回答
展开全部
n!/n^n=(1/n)(2/n)(3/n)....(n/n)<1/n
接下来可以用定义,也可以用两边夹法则,不用我多说了吧
接下来可以用定义,也可以用两边夹法则,不用我多说了吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1楼的成立还要求证明(n/n)*[(n-1)/n]*[(n-2)/n]*...的极限为有限。
应该是这样1/(n^n)/n!=1/(n/1*n/2*n/3*.....*n/n)
可得n/1*n/2*n/3*.....*n/n所有因子大于1,且大于n,极限为无穷,故1/(n/1*n/2*n/3*.....*n/n)的极限为0。。
应该是这样1/(n^n)/n!=1/(n/1*n/2*n/3*.....*n/n)
可得n/1*n/2*n/3*.....*n/n所有因子大于1,且大于n,极限为无穷,故1/(n/1*n/2*n/3*.....*n/n)的极限为0。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |