a^3+b^3+c^3≥3abc (a,b,c正实数) 如何用(a+b)/2≥√ab 证明?
1个回答
展开全部
(a+b)/2≥√ab
即(a+b)^2≥4ab
a^2+b^2≥2ab
由此得
a^2+b^2≥2ab
b^2+c^2≥2bc
c^2+a^2≥2ac
所以a^2+b^2+c^2≥ab+bc+ca ①
①式两边乘以a
a^3+ab^2+ac^2≥ba^2+abc+ca^2 ②
①式两边乘以b
b^3+ba^2+bc^2≥ab^2+cb^2+abc ③
①式两边乘以c
c^3+ca^2+cb^2≥abc+bc^2+ac^2 ④
②+③+④
得到a^3+b^3+c^3≥3abc
即(a+b)^2≥4ab
a^2+b^2≥2ab
由此得
a^2+b^2≥2ab
b^2+c^2≥2bc
c^2+a^2≥2ac
所以a^2+b^2+c^2≥ab+bc+ca ①
①式两边乘以a
a^3+ab^2+ac^2≥ba^2+abc+ca^2 ②
①式两边乘以b
b^3+ba^2+bc^2≥ab^2+cb^2+abc ③
①式两边乘以c
c^3+ca^2+cb^2≥abc+bc^2+ac^2 ④
②+③+④
得到a^3+b^3+c^3≥3abc
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询