(lnx)^(1/x)=e^

 我来答
镇职欧阳怀思
2022-10-12 · TA获得超过3630个赞
知道大有可为答主
回答量:3111
采纳率:25%
帮助的人:199万
展开全部
(lnx)^(1/x)=e^[ln((lnx)^(1/x))]=e^[(lnlnx)/x],应用罗必塔法则可知lim(lnlnx)/x=lim(1/(xlnx))=0,因此题目答案为e^0,即1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式