三角形ABC中,BP,CP分别是角B,角C的外角平分线,求证:角BPC=90°—1/2角BAC.
展开全部
要证角BPC=90°—1/2角BAC,即证2角BPC=180°—角BAC.
过P点分别作ab,ac延长线和bc的垂线,垂足分别为D,E,F.
由于BP,CP分别是角B,角C的外角平分线,可知BP,CP分别为角DPF和角EPF的角平分线,也就知道角DPE=2倍角BPC.
对于四边形ADPE,由于有两个角为直角,可知道角DAE+角DPE=180.
把角DPE=2倍角BPC代人上面,可以得到2倍角BPC+角DPE=180.
再移项可得2角BPC=180°—角BAC,再除以2,得证.
过P点分别作ab,ac延长线和bc的垂线,垂足分别为D,E,F.
由于BP,CP分别是角B,角C的外角平分线,可知BP,CP分别为角DPF和角EPF的角平分线,也就知道角DPE=2倍角BPC.
对于四边形ADPE,由于有两个角为直角,可知道角DAE+角DPE=180.
把角DPE=2倍角BPC代人上面,可以得到2倍角BPC+角DPE=180.
再移项可得2角BPC=180°—角BAC,再除以2,得证.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询